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The surface conductance coefficient H of a cylindrical iron bar is calculated from 
experimental measurements of the temperature distribution in the steady state and during 
cooling. In the steady state, H can be considered constant, with fluctuations within statistical 
error. In cooling, there are two H coefficients: one governing the sharper temperature fall 
over short times, and the other governing the smoother falI over longer times. 

INTRODUCTION 

In the interior of a solid, the temperature T is assumed to be a continuous 
function of position (x, y,z) and time b, and this is assumed also to hold for 
the first differential coefficient with respect to time and for the first and 
second differential coefficients with respect to position. These assumptions 
are not made at the boundary of the solid or at the instant when heat flow is 
taken to start, and it is necessary to determine the expressions for the initial 
conditions and boundary conditions. The boundary condition of linear heat 
transfer at the surface [l] into a medium at TO corresponds to Newton’s law 
of cooling 

surface flux = N( T - T,) 0) 

Here, H is a constant called the surface conductance or the coefficient of 
surface heat transfer, its inverse being the surface thermal resistance per unit 
area. If H tends to zero, there can be no fIux across the surface, whereas if 
H tends to infinity, the boundary conditions can be a prescribed surface 
temperature which may be constant, or a function of time, or position, or 
both. Although this latter is the easiest boundary condition to work with and 
that which has been most studied, in practice it is often difficult to prescribe 
surface temperature, and a linear heat transfer boundary condition, such as 
eqn. (1), may better represent real situations 111. 

Equation (1) approximately describes several different heat flow prob- 
lems, such as (a) forced convection, in which a fluid at TO is forced rapidly 
past the surface of the solid, (b) combined forced convection and evapora- 

~~~031/9~~~3.~0 0 1991 - Elsevier Science Publishers B.V. 



256 

tion, and (c) the existence of a thin skin of a poor conductor, such as scale, 
grease or oxide, on the surface of a body. In most practical cases, however, 
the heat flow from the surface is non-linear and eqn. (1) is not valid. 
Examples are (a) black-body radiation, which obeys the Stefan-Boltzmann 
fourth-power temperature law, and (b) in natural convection, where it is 
found experimentally that the rate of heat loss from the body is propor- 
tional, not to the temperature difference between the body and the sur- 
rounding fluid, but very nearly to the power 5/4. Nevertheless, for small 
ranges of temperature, this non-linear behaviour may be approximated by a 
linear law like eqn. (1). 

In any case, the problem is that H is not necessarily constant because it 
depends on several factors, such as the nature of the material, the shape of 
the surface, the temperature of the body, and so on. Numerical values of H 
are to be found in various references, for example refs. 1 and 2, which for a 
few special cases allow a rough approximation of practical heat transfer to 
be made. 

This paper describes an approach to determining the H coefficient from 
new experimental data on the temperature distribution in a metallic bar. 
Section 2 describes the mathematics by which H can be calculated from the 
steady state and cooling data. The experimental results and their analysis are 
given in Section 3, and a number of conclusions are presented in Section 4. 

MATHEMATICAL TREATMENT 

The broad mathematical treatment of heat transfer in a solid is applied in 
this section to the case under consideration, which is the linear heat flow for 
an isotropic homogeneous bar, where all thermal, physical and geometrical 
properties (such as the conductivity K, density p, specific heat c, perimeter p 
and cross section W) are constant in the range of temperature used. 

The differential equation for the temperature distribution in a semi-in- 
finite bar, with no internal source of heat, lying along the x-axis is given by 

PI 
aT K a2T -- 
at=jG ax2 (2) 

where K/cp has dimensions of length squared per unit time and is known as 
the thermal diffusivity (Y of the conducting material. 

Steady state 

If the flow of heat 
state, eqn. (2) reduces 

d2T Hp 
--zT=O 
dx2 

is invariant with respect to time, i.e. for the steady 
to 

(3) 
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where the constant temperature of the surrounding medium is taken as the 
zero of the temperature scale. The solution of eqn. (3) is a single exponential 
given by 

T= Tl eCmx (4 

where Tl is the constant temperature at the end of the bar and 

m2 = Hp/Kw (5) 

Non-steady state 

Now let us consider the transient state, i.e. the heating or cooling of the 
body as a function of time. The simplest case is that in which the body has a 
large thermal conductivity and a correspondingly low heat-transfer coeffi- 
cient. The heat flow to or from the body is controlled principally by the 
surface thermal resistance (convection resistance of ref. 2); the body is 
spacewise isothermal and the temperature varies only with time. In this case, 
eqn. (2) becomes 

dT -HPT _- 
dt- cpw 

the solution of which is another exponential given by 

T= Tr e-“‘cr (7) 

where T’ is the temperature of some point i of the bar at time zero and 

m, = Hp/cpw (8) 

A plot of eqn. (7) for ln( T/T,) vs. t would yield a family of straight lines 
with m, as a parameter. As can be seen, m, does not depend on K, but may 
be modified usefully taking into account the diffusivity (Y and the ratio w/p, 
which, for most regular geometric shapes, is equal to the ratio L of the 
volume of the body to the surface area and is recognized as a significant 
dimension of the system. Thus, m, can be rewritten as 

m,t = (HL/K)( at/L’) = Bi X Fo (9) 

where (HL/K) and ( at/L2) are known as the Biot (Bi), and Fourier (Fo) 
moduli respectively. These moduli are dimensionless, and have the great 
advantage that, when used in the manner of eqn. (9), the temperature-time 
histories for all bodies of finite thermal conductivity can be reduced to a 
single universal plot for all values of the convection boundary conditions. 
Now, eqn. (7) may be plotted for ln(T/T,) vs. Fo with Bi as a parameter. 

For a cylinder of radius r,, the value of L is r,/2, thus 

Bi = Hr,/2 K (10) 
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and 

Fo = 4&/r: 01) 

If H satisfies eqn. (l), i.e. does not depend on the temperature distribu- 
tion regime (whether steady or non-steady state), eqns. (5) and (8) lead to 
the following relationship between m and m, 

m2 = pcmJK (12) 

RESULTS AND DISCUSSION 

As was seen in the previous section, if the temperature distribution in the 
bar obeys an exponential law for the steady state and cooling, the exponents 
m and m, are dependent on H. The accuracy of the derived value of H will 
depend on the goodness of fit of the experimental data to the steady state 
and cooling laws. 

The experimental results were obtained on a cylindrical iron bar of 155 
cm length, 2.25 cm radius, 7.8 g cmd3 density, 0.452 J g-’ K-i specific heat, 
and 0.803 J s-l cm-’ K-l thermal conductivity. The bar was insulated with 
asbestos cord and heated by a resistive coil at one end. The temperature 
distribution was measured by thermocouples inserted along the axis and 
connected to a data logger. The coordinate origin was taken to be 11 cm 
from the heated end, where the first thermocouple was placed. Taking into 
account the temperature gradient in the bar, the others were placed at 4, 10, 
16, 25.5, 36, 51, 66, 81, 96, 116, and 136 cm from the first. The experimental 
procedure has been described in detail elsewhere [3]. 

Steady state 

Table 1 shows the results for the nine selected steady states, labelled 
I-IX, covering a range of temperature of about 50 o C, where 7’,, means the 

TABLE 1 

Values for the steady state fitting of the experimental results to an exponential law, eqn. (4) 

Case T le T,, --M z(T,e-T,t)' H 

I 11.3 11.1 3.79 0.13 15.86 
II 17.6 17.2 3.21 0.64 11.38 
III 25.4 25.7 4.00 0.92 17.66 
IV 26.0 26.1 4.13 0.28 18.83 
V 28.6 28.7 3.55 0.23 13.91 
VI 33.3 32.2 3.99 4.53 17.58 
VII 34.9 34.9 3.71 0.35 15.20 
VIII 47.4 44.4 3.40 27.17 12.76 
IX 61.5 61.2 3.50 0.40 13.53 
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excess of the experimental temperature in the first thermocouple over room 
temperature. The full steady state temperature distribution for all the cases 
is available on request. The entry T’, is the theoretical temperature at the 
first point when the experimental data are fitted to an exponential equation 
as eqn. (4), and m is the exponent. The values of H in the last column were 
calculated from eqn. (5). 

The experimental results are perfectly fitted by a single exponential, as 
can be seen from the squares of the differences, with one small discrepancy 
in VIII caused by the first two values of the temperature. Nevertheless, 
additional fits to a double exponential and to power laws were performed 
for all the cases. Except for case VIII, in which one exponent is much greater 
than the other, the double exponential always reduces to a single exponential 
because the two exponents are the same and the sum of the coefficients gives 
the value T,, with a standard deviation of kO.6, as in the single exponential 
fit. In all cases the power law was far from being a good fit. 

Every value of m has a standard deviation of f0.06. The results are quite 
consistent with m being a constant with mean value m = 3.7 f 0.3. As a 
consequence, the calculated values of H are also consistent with being 
constant, but the ~cert~nty is greater as a result of error propagation 141. 
Every H has a standard deviation of +0.22, and the mean value of H from 
substituting KG in eqn. (5) is k?= 15.2 + 0.7. 

Non-steady state 

Cooling was measured starting from the nine steady states described 
above. Table 2 lists a selection of the results: for two intermediate tempera- 
tures (cases III and VIII) and the highest and the second lowest tempera- 
tures (cases IX and II). The entries T( and m, are the parameters of eqn. (7) 
to fit a single exponential to the measurements of cooling at the first point 
along the bar. The entry N is the number of measurements made during the 
time of cooling t for each point. 

Tbe values of m, obtained from the fit show that they can be considered 
as independent of temperature, giving the same value within statistical error. 
The mean value is Z, = 0.24 2 0.01. From this value of m,, f? can now be 

TABLE 2 

Values for the cooling of the first point of the bar for the cases chosen. The experimental 
results have been fitted to an exponential law, eqn. (7) 

Case T,’ f a -(m,+a)X10-3 E(&--(fit)' N t x103 (s) ._ 

II HLo*o.7 0.238 f 0.015 7.52 43 9.72 
III 24.4f0.8 0.223 fO.O1l 16.91 31 12.00 
VIII 46.5 f 0.6 0.241 f 0.006 67.51 48 20.82 
IX 58.1 f 0.9 0.241 f 0.006 68.79 26 19.20 
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TABLE 3 

The same as Table 2, but for a double exponential law, eqn. (13) 

Case T{ It u -(m’fo)xlO-3 T/&a -(m”fo)x10-3 z(Tie - Tit)’ 

II 11.8+0.5 0.42f0.03 7.35 f0.03 0.121 f 0.007 1.15 
III 19.3 f0.8 0.37 f 0.03 6.66 f 0.01 0.078 It 0.004 0.87 
VIII 23.4 +0.4 0.57 f 0.02 27.02 + 0.02 0.156 + 0.003 1.64 
IX 37.6 f 1.2 0.45 f 0.03 24.33 k 0.01 0.134 f 0.002 0.19 

calculated using eqn. (8). The result is g = 11.6 + 1.0. The discrepancy 
between this value of H and that obtained in the steady state (15.2) is 
considerable, and eqn. (12) is consequently far from being verified. The 
source of the discrepancy must be in fitting the cooling to a single exponen- 
tial. The differences between experimental and theoretical values in Table 2 
show that the cooling is actually an exponential law, but there were slight 
deviations in the first few values of the temperature. This means that a 
better fit could result from trying a double exponential law 

T= T’ e- rn’f + T,I:” e-m”r 
(13) 

where the actual H will be obtained through the appropriate combination of 
the H values obtained from m’ and m”, which may obey a law of the type 
of eqn. (8). 

Table 3 is the same as Table 2 but for a double exponential, where the fit 
turns out to be quite good, as can be seen from the last column. The m 
coefficients are now very sensitive to the temperature, with a higher value 
H’ obtained from m’, which governs the sharper decay of the temperature, 
and a second smaller value H” from m”, which controls the smoother 
temperature decay. In separate plots of ln(T/T;) for shorter times and 
ln( T/T,“) for longer times, m’ and m” would be the slopes of the 
respective straight lines, and the slope m, for the whole time will be their 
difference. This behaviour is the same for the H coefficients. Table 4 shows 
these values: the standard deviation is + 0.03 for m, values and + 1.0 for 
the values of H. 

The values are very similar and only the third is appreciably higher. Here 

TABLE 4 

Values for the surface conductances obtained from the results in Table 3 

Case --m,x10-3 -H’ _ H” -H 

II 0.30 20.4 5.9 14.5 
III 0.29 17.9 3.8 14.1 
VIII 0.41 27.6 7.6 20.0 
IX 0.32 21.8 6.5 15.3 
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again, case VIII shows a discrepancy with respect to the rest. Nevertheless, 
the mean value for H is 16.0, in agreement, within statistical error, with that 
obtained in the steady state. The mean value of m, is E, = 0.33, which is 
higher than the mean value obtained for the single exponential fit (0.24). 
The experimental values are now very close to the verification of the 
theoretical relationship given by eqn. (12). The exact verification of eqn. (12) 
would mean that eqn. (2) could be substituted by eqn. (6) because the 
second derivative of the temperature with respect to x would be zero, i.e. the 
body would be spacewise isothermal. This is an approximation whose 
goodness will depend on the characteristics of the body and the experimen- 
tal conditions. 

The above discussion for iron could open new ideas for the study of 
another type of material quite different from a metallic bar, such as 
amorphous or plastic media [5,6]. 

CONCLUSIONS 

From the results obtained for the temperature distribution in the iron bar, 
determining the behaviour of the surface conductance H, it is possible to 
draw the following conclusions. 

As can be seen in Table 1, the steady state in the iron bar obeys a single 
exponential decay for the temperature, eqn. (4), confirming one of the 
conclusions of ref. (3). 

The surface conductance H, calculated from the exponent m in the steady 
state, is found to be a constant, in agreement with the linear hypothesis of 
eqn. (l), but with a fluctuation of about 8%. 

The cooling of the iron bar obeys a double exponential, eqn. (13), with 
first and second exponents governing the sharper and the smoother tempera- 
ture gradient, respectively. It means that there are two surface conductances, 
H’ and H”, where the first controls the cooling at short times and the 
second, which is about 70-80% smaller, controls the cooling at longer times. 

The difference of the two surface conductances obtained during cooling 
was found to be equal to that calculated for the steady state, and eqn. (12) 
was verified approximately. Some uncertainty could appear because of the 
hypothesis that the heat flow is controlled principally by convection resis- 
tance, giving rise to eqn. (6). 

Among the nine cases studied, only case VIII shows slight discrepancies 
in the steady state and cooling, and this could mean that there could be 
some doubt about an unknown error during the experimental procedure or 
in reading the data. 

Finally, in order to calculate the Biot modulus used in the cooling, eqns. 
(7) and (9), in a simple and accurate way, it may be better to calculate the 
value H from the steady state, rather than from the cooling, and to use the 
resulting value in eqn. (10). 
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